SDKs > Python On this page

How to use the Python SDK prerequisies

Installation
Prerequisites Instantiate a client

Use the FluidStack client in your
« An APl key app
« Familiarity with command-line tools Call endpeints
« Basic familiarity with Python; Python 3+ installed Instances

SSH Keys

List available configurations and

Installation operating sy

tem templates

Our Python SDK is hosted at the Python Package Index (3 (PyPl). You can use any Python
package manager, such as pip 4 or poetry (4.

For example, you can add this dependency to your project's build file:

1 pip install fluidstack

poetry add fluidstack

Instantiate a client

Import FluidStack and instantiate a client with your API key:

Example
from FluidStack.client import FluidStack

client = FluidStack(
4 api_key = "<your_api_key>"

Now you can use the client to consume the API from your Python application.

[:] Avoid placing your API key in any file that might be shared with others. For information on using a
.env file instead of adding the API key directly into a file, see: APl Overview - Secure use of
your API key.

Use the FluidStack client in your app

The FluidStack client simplifies making APl requests. It stores the API key that you used to
instantiate it, and it already knows our API server’s base URL, so you can omit those details
in your requests.

The SDK also provides code hints, type hints, parameter information, and other useful
functions to speed up development.

For example, compare the tabs below:

With the SDK Without the SDK [w]

client.instances.create(
name="my_instance",
gpu_type="RTX_A6600_48GB",
4 ssh_key-"my_ssh key"

You can see that instead of using requests or a similar module to send an HTTP request and
including the endpoint path and headers each time, the FluidStack client simplifies the
request for you.

Call endpoints

Requests to APl endpoints are implemented in the SDK as methods of the client. For
example, the GET /instances endpoint is implemented like this:

List user instances with the SDK ©
client.instances.list()
The code shown above does not do anything with the response from the endpoint. It is up to
you to handle the response.

For example, you could simply print the entire response to the terminal:

Print the entire response

print(client. instances.list())

Or you could loop through the list and print only the name and status for each instance:

Print each instance name and status

1 my_instances - client.instances.list()

2 for instance in my_instances:

3 print(f"Instance: {instance.name}, Status: {instance.status}"}

Instances

List user instances Create an instance Stop aninstance Start aninstance Terminate an instance



& Fluidstack

Q Searct
Quickstart
APl overview

Account management

rd

Instances

Configurations

Operating systems

SSH

What is S5H?

How to use SSH keys

SDKs

Pythor

How to use the Python SDK

APl reference
Instances
SSH Keys

Configurations

client.instances.create(
2 name="my_instance",
3 gpu_type="my_gpu_type",
4 ssh_key="my_ssh_key",
5 gpu_count="my_gpu_count”

operating_system_label-"my_os_label"

7))

parameter type required default

name string yes nfa

gpu_type string yes nfa

ssh_key string yes nfa

gpu_count string no 1

operating_system_label string no ubuntu_20_04_its_nvidia
SSH Keys

List SSH keys Delete an SSH key

1 client.ssh_keys.delete(

ssh_key_name="my_ssh_key",

)
parameter type required
ssh_key_name string yes

List available configurations and operating system
templates

Configurations 0S Templates

client.configurations.1ist()

Parameters: None.

Was this page helpful? ¢4 Yes &P No

List user instances Up Nex




